โšก Neuromorphic Computing

Code Intelligence with Spikes

Spiking neural networks for program analysis and code generation. Faster inference, lower energy, competitive accuracy.

3.2ร—
Faster Inference
92%
Energy Reduction
64.5%
Accuracy@1
neural_ast_builder.py
1class NeuralASTBuilder:
2 def encode(self, source):
3 # Convert AST to spike trains
4 ast = parse(source)
5 spikes = self.traverse(ast)
6 return spikes
01

Architecture Pipeline

From source code to spike-based completion

๐Ÿ“„

Source Code

Python, JS, etc.

โ†’
๐ŸŒณ

AST Parser

Syntax tree

โ†’
โšก

Spike Encoder

Temporal patterns

โ†’
๐Ÿง 

SNN Reasoner

Pattern matching

โ†’
โœจ

Output

Completion/Bug

02

AST to Spike Encoding

AST traversal maps to temporal spike patterns

Spike Train Visualization
Type encoding
Value encoding
Structure encoding
03

Experimental Results

Performance on code intelligence benchmarks

Code Completion (Latency)
CodeLlama
520ms
CodeT5
168ms
NCI (Ours)
45ms
Bug Detection F1
DeepBugs
71.4%
CodeBERT
78.3%
NCI (Ours)
76.9%
Energy per Sample
GPU (V100)
12 mJ
Loihi
0.8 mJ
04

When NCI Excels

Ideal applications for neuromorphic code intelligence

โšก

Real-Time IDE

Sub-50ms latency for instant code completion without lag

๐Ÿ“ฑ

Edge Deployment

Run on resource-constrained devices with minimal battery impact

๐Ÿ”

Clone Detection

Fast structural pattern matching for duplicate code identification

๐Ÿ“š

Long Code

8ร— better scaling with code length than transformer models

Explore the Research

Complete architecture, spike encoding details, and benchmark results.

Read Whitepaper All Research